MTH 303 Real analysis

Homework 7

1. Let $f : [a, b] \to \mathbb{R}$ be such that $m \leq f(x) \leq M$ for some $m, M \in \mathbb{R}$ and for all $x \in [a, b]$. Show that

$$m(b-a) \le L(P, f) \le U(P, f) \le M(b-a)$$

for every partition P of [a, b].

2. Let $f:[a,b] \to \mathbb{R}$ be a bounded function. If

$$U(P,f) - L(P,f) < \epsilon \tag{1}$$

for some $\epsilon > 0$ and some partition P of [a, b], then show that the inequality (1) holds for every refinement of P.

3. (a) If $f, g \in \mathcal{R}([a, b])$ and $\alpha \in \mathbb{R}$, then $f + \alpha g \in \mathcal{R}([a, b])$ and

$$\int_{a}^{b} (f + \alpha g) = \int_{a}^{b} f + \alpha \int_{a}^{b} g.$$

(b) If $f \in \mathcal{R}([a, b])$ and $c \in (a, b)$, then $f \in \mathcal{R}([a, c])$ and $f \in \mathcal{R}([c, b])$. Moreover,

$$\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f$$

(c) If $f, g \in \mathcal{R}([a, b])$ and if $f(x) \leq g(x)$ for all $x \in [a, b]$, then

$$\int_{a}^{b} f = \int_{a}^{b} g.$$

(d) If $f \in \mathcal{R}([a, b])$ and if $|f(x)| \leq M$ for some M > 0 and for all $x \in [a, b]$, then

$$\left|\int_{a}^{b} f\right| \le M(b-a).$$

- (e) If $f \in \mathcal{R}([a, b])$, then show that $f^+ = \max \{f, 0\}$ and $f^- = \min \{f, 0\}$ are Riemann integrable on [a, b].
- (f) If $f \in \mathcal{R}([a, b])$, then show that $f^2 \in \mathcal{R}([a, b])$.
- (g) If $f, g \in \mathcal{R}([a, b])$, then show that $fg \in \mathcal{R}([a, b])$. Also, show that

$$\left| \int_{a}^{b} fg \right| \leq \left(\int_{a}^{b} f^{2} \right)^{\frac{1}{2}} \left(\int_{a}^{b} g^{2} \right)^{\frac{1}{2}}$$

The above inequality is known as the Cauchy-Schwarz inequality for Riemann integrable functions. MTH 303 Homework 7 (Continued)

4. If $f \in \mathcal{R}([a, b])$, then show that $|f| \in \mathcal{R}([a, b])$ and

$$\left|\int_{a}^{b} f\right| \leq \int_{a}^{b} |f|.$$

Also, show by an example that the converse of the above may fail.

- 5. Let $x_0 \in [a, b]$ and $f : [a, b] \to \mathbb{R}$ be defined by $f(x_0) = 1$ and f(x) = 0 for all $x \neq x_0$. Show that $f \in \mathcal{R}([a, b])$ and $\int_a^b f(x) dx = 0$.
- 6. Let $f: [0,1] \to \mathbb{R}$ be defined by f(x) = 1 for all $x \in [0,1)$ and f(1) = 0. Show that $f \in \mathcal{R}([0,1])$ and $\int_a^b f(x) dx = 1$.
- 7. Suppose $f \ge 0, f$ is continuous on [a, b], and $\int_a^b f(x) dx = 0$. Prove that f(x) = 0 for all $x \in [a, b]$. Also, compare this with previous question.
- 8. Let f be continuous on [a, b], and $\int_a^b f(x) dx = 0$, then prove that f(x) = 0 for at least one $x \in [a, b]$.
- 9. Let f be continuous on [a, b], and $\int_a^b f(x)g(x)dx = 0$ for every continuous function g on [a, b], then prove that f(x) = 0 for all $x \in [a, b]$.
- 10. Suppose f is a bounded real function on [a, b], and $f^2 \in \mathcal{R}([a, b])$. Does it follow that $f \in \mathcal{R}([a, b])$? Does the answer change if we assume that $f^3 \in \mathcal{R}([a, b])$?
- 11. Suppose f is a bounded real function on [a, b] and f has only finitely many points of discontinuity on [a, b]. Show that $f \in \mathcal{R}([a, b])$. (We proved it in class for functions having discontinuity at a single point.)
- 12. Let C denote the Cantor set in [0, 1]. Let f be a bounded real function on [0, 1] which is continuous at every point outside C. Show that $f \in \mathcal{R}([0, 1])$. (Hint: Recall that the Cantor set C has length zero and can be covered by finitely intervals whose total length can be made as small as needed. Use this and proceed as in the previous question.)
- 13. Consider the function f defined on \mathbb{R} by f(x) = 0 if x is irrational and $f(x) = \frac{1}{n}$ if $x = \frac{m}{n}$, where m and n are integers without any common divisors. Is f Riemann integrable on [0, 1]?
- 14. Let f and g be bounded functions on [a, b] such that the composite $f \circ g$ is Riemann integrable on [a, b]. Does it imply that both f and g are Riemann integrable on [a, b]?
- 15. Show by an example that composition of two Riemann integrable functions may not be Riemann integrable.

MTH 303 Homework 7 (Continued)

16. Suppose f is a real function on (0,1] and $f \in \mathcal{R}([t,1])$ for every t > 0. Define

$$\int_{a}^{b} f(x)dx = \lim_{t \to 0} \int_{t}^{1} f(x)dx$$

(Note: The notation $\int_a^b f(x) dx$ on LHS should not be taken as integral of f in the sense of Riemann integral)

- (a) If $f \in \mathcal{R}([0,1])$, then show that the above definition of integral agrees with the Riemann integral.
- (b) Construct a function f such that the above limit exists, although it fails to exist with |f| in place of f.
- 17. Suppose $f \in \mathcal{R}([a, b])$ for every b > a, where a is fixed. Define

$$\int_{a}^{\infty} f(x)dx = \lim_{b \to \infty} \int_{a}^{b} f(x)dx$$

if the limit exists and is finite. In that case, we say that the integral on the LHS converges. If it also converges after f has been replaced by |f|, it is said to converge absolutely.

Assume that $f(x) \ge 0$ and that f decreases monotonically on $[1,\infty)$. Prove that the integral $\int_{1}^{\infty} f(x) dx$ converges if and only if the series $\sum_{n=1}^{\infty} f(n)$ converges.

- 18. Let $g: \mathbb{R} \to \mathbb{R}$ be differentiable. Let $F(x) = \int_0^{g(x)} t^2 dt$. Show that $F'(x) = g^2(x)g'(x)$ for all $x \in \mathbb{R}$.
- 19. Let $f \in \mathcal{C}^2([a, b])$. Show that

$$\int_{a}^{b} f''(x)dx = (bf'(b) - f(b)) - (af'(a) - f(a)).$$

(Hint: Integration by parts).

20. (Mean value property for integrals): Let f be continuous real function on [a, b]. Show that there exists $c \in [a, b]$ such that

$$\int_{a}^{b} f(x)dx = f(c)(b-a).$$

21. Let f be monotone function on [a, b]. Show that there exists $c \in [a, b]$ such that

$$\int_{a}^{b} f(x)dx = f(a)(c-a) + f(b)(b-c).$$

Page 3 of 4 Please go on to the next page...

MTH 303 Homework 7 (Continued)

22. Let $f \in \mathcal{R}([a, b])$ and $\epsilon > 0$. Show that there exists a continuous function g on [a, b] such that

$$\int_{a}^{b} |f(x) - g(x)|^2 dx < \epsilon.$$

23. Let f be a real and continuously differentiable function on [a, b] such that f(a) = f(b) = 0and

$$\int_{a}^{b} |f(x)|^2 dx = 1.$$

Show that

$$\int_{a}^{b} xf(x)f'(x)dx = -\frac{1}{2}.$$